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ON THE ENERGETICS OF THE MATURE HURRICANE
AND OTHER ROTATING WIND SYSTEMS

Richard L. Pfeffer
Air Force Cambridge Research Center

[Menuscript received January 17, 1958]

ABSTRACT

The first part of this paper is devoted to the formu-~
lation and interpretation of the energy equations as they
apply to the study of rotating wind systems of interest in
meteorology. In a subsequent section the energy cycles of
different rotating systems in the atmosphere are discussed.
Finally, the roles of "azimuthal-mean motions" and of "hori-
zontal-eddy processes” in the generation of azimuthal-mean
kinetic energy in the mature hurricane are examined quanti-
tatively from observational data. AsS expected, azimuthal-
mean motions generate significant amounts of mean rotational
kinetic energy within the hurricane. However, interactions
with the surrounding atmosphere do not cause organized ro-
tetional kinetic energy of the hurricane to be dissipated
into that of horizontal eddies, as might be expected. Ac~-
cording to the observations, the reverse is the case; name-
ly, that the hurricane circulation feeds on the energy of
the horizontal eddies.

1. INTRODUCTION

The large-scale motions of the atmosphere are characterized largely by
the fact that they are orgenized into systems which possess rotation about
vertical axes. While it is generally accepted that this rotation is main-
tained in the end as a result of the differential heating of the atmosphere
and the rotation of the earth, s fundamental problem of meteorology has been
that of ascertaining the physical processes which operate to convert thermody-
namical energy into the kinetic energy of organized rotation. In recent years
this problem has received considerable attention, and substantial progress
has been made toward a better understanding of the dynamics of rotating
fluid systems in general. The theoretical work of Kuo [10,11,12,13,14],
Davies [2,3], and Lorenz [16], and the experiments of Fultz [%,5] and Hide
[7], dealing with the behavior of water in a cylindrical vessel under the
influence of differential heating and rotation, have contributed signifi-
cantly to this understanding.

The purpose of the present article is threefold: (1) to formulate and
interpret a system of equations suitable for studying the energetics of ro-
teting wind systems of meteorological interest; (2) to explore, with the aid
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of these equations, the various ways in which rotational motion can be gen-
erated and maintained in the atmosphere; and (3) to examine quantitatively
from observational data the particular way in which rotationsl motion is
maintained in the case of the mature hurricane. The basic principle around
which the present discussion is organized is the law of conservation of energy.
Previous observational studies of +the dynemics of the mature hurricane con-
ducted by the writer [18,19] have dealt with the balance of angular momentum
about the axis of rotation of the hurricane. Whereas the principle of con-
servation of momentum provides a simple framework in which to study the me-
chanical aspects of the problem, the principle of conservation of energy pro-
vides a convenient link between the mechanics and the thermodynamics of the
problem.

A fundamental question which arises in connection with the energetics of
rotating wind systems concerns the extent to which such systems derive their
kinetic energy directly from potential and internal energy, and the extent to
which they give energy to, or receive energy from, other systems in their en-
vironment. The work of Reynolds [21], dealing with the stability of turbulent
flow in an incompressible fluid, provides a basis for attacking questions of
this nature in a straightforward manner, By resolving the fluid velocity into
& mean and a deviation therefrom, Reynolds derived eénergy equations which gov-
ern the interactions between a "basic current” and finite eddy disturbances in
the flow., More recently, Lorenz [17] has considered s similar partitioning of
availgble potential energy by resolving the temperature field into a mean and
a deviation therefrom.

The present development follows the line of attack set forth by Reynolds,
with the exception that no assumptions are made here regarding the compressi-
bility of the fluid. As a result, it will be possible to study conversions
between kinetic and potential plus internal energy, as well as conversions
between the kinetic energy of the basic current and the kinetic energy of the
eddies. The energy equations will be derived relative to a system of spherical
polar coordinates (r,A@, 0 ) with origin located at the center of the earth,
where r is linear distance from the origin measured along a vertical axis
which coincides with the axis of a rotating wind system, A ¢ is angular dis-
tance from this axis, and © is azimuth measured positive in the counterclock-
Wwise sense. The procedure to be followed consists in resolving each of the
independent variables in the mechanical eénergy equation into a mean with re-
spect to © and a horizontal-eddy component defined as the deviation from this
mean. With the use of this resolution we shall then derive equations for the
time rate of change of azimuthal-mean snd horizontal-eddy forms of kinetic
energy. The former may be thought of as properties of the rotating system
under consideration, and the latter as properties of neighboring systems.
Before proceeding with these developments, however, we shall begin with a
discussion and interpretation of the equations for total energy.

2. EQUATIONS FOR TOTAL ENERGY
The following notation will be used throughout the remainder of the paper:

Symbol Definition
(x, ¥, z) linear distances in the o, - A @, end r directions,
respectively, ' =a+ z, where a is the radius of

the earth.
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(ax, dy, az)
(CT) Cn’ W)
(Bs Dys D,)
a
€
t
R
CV
Q
(7|
&
P, T, p
K, @, I
%
w
Yo
fn

((r sin A ¢)ae, -rd(Ag), ar)

the components of the veiocity in the x, y, and 2z
directions, respectively.

the components of the viscous force per unit mass in
the x, y, and z directions, respectively.

pCTDx + anDy
r® gin Ag

time

gas constant for dry aix;

heat capacity of dry air at constant volume
rate of external heating per unit mass

rate of generation of internel energy per unit volume
by viscosity

acceleration of gravity

pressure, temperature ,2a.nd 'dEnsity » respectively
Ch + C

horizontal kinetic ( T 5 2, potential (gz), end

internal (Cv‘.l‘) energy per unit mass, respectively

latitude of the verticel axis along which r is measured

angular velocity of the earth

o sin ¢0

2 m¢o cos A¢

In terms of the above notation we may write the hydrodynaemical equations

in the form,
ac,,

p ——

at

Cp(oCy) cot AY Crlow)

- + (aa.)¢0 cos Ag) oC -

r r

(1)
(2c:yo sin A¢) pow - % + pr‘
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L
i dz: . Cp (p iT) cot Ag ) Cnr(pw) ) (Em% cos A9) pCy, -
%% + pDy _, (2)
s CTipCT) . cn(zcn) . (am% in A ) oy - pg - %lz’ +eD_ , (3)
%‘% T é ( aedxpCT * i iypcn * aeézpw ) ? (h)
p¥=-§(aZxCT+a§ycn+a§zw)+pQ'+lLP| 4 (5)
P = PRT . (6)

The first four terms on the right hand side of (1) measure the rate at which
the © - component of the relative linear momentum of a fluid elemént increases
when the element moves closer to the axis of rotation under conservation of
angular momentum. The first three terms on the right hand side of equations
(2) and (3) have a similar interpretation. These terms may be thought of as
fictitious forces.

Cplpw)

Assuming hydrostatic equilibrium, and neglecting the terms

Cn( W) CT(an) cot AY
, and ( 2w¢ sin & ¢)(pw) in comparison with
0

2

r r

CT(pCT) cot Ag

= , and (2w¢ cos Aﬁ)(pcn) » respectively, we may rewrite

0
equations (1), (2), and (3) as follows:

ac C.(pC.) cot A

o d1I:l ok 1; + (2u>¢0 cos A¢)(pcn) - g—}l% + pr (D
ac C(pC,) cot Ag

g P e - (2gy cos A9)(ecy) - % + oD (8)

- 9p
pg == (9)




Multiplying (7) by Cp, (8) by C_, and (9) by w, we get

c C.Cr(pC.) cot Ag :
4 T TT™ 'n
P E"E( - ) = = + (2<o¢o cos A¢) CT(an) -
¢, B4 o0 (10)
T ﬁ P TDx
a cn2 CCr(PC ) cot Ag
0 —dE.( - =- = - (2a)¢0 cos Af) C(pC)) -
c gl’- + pC.D (11)
n Jy ny
ad d
P E Ve - (12)
CTCT( pcn) cot Ag
It will be noted that the terms, — - , and

X T
(aa.yo cos Ag) Cp (pcn) appear in equations (10) and (11) with opposite signs.

These terms measure the rate of positive generation of kinetic energy of
tangential motion, and the rate of negative generation of kinetic energy of
normal motion, by the fictitious forces. Their sum measures the rate of con-
version between the two components of horizontal kinetic. energy, and cannot,
therefore, effect a change in the total kinetic energy of a fluid element.
(It should be remarked that a similar coupling with the potential energy
equation is eliminated by the assumption of hydrostatic equilibrium and the
neglect, in the equations of motion, of the fictitious forces involving the
vertical component of velocity.) By combining (10) and (11) we eliminate
the fictitious work terms and arrive at the following expression for the rate
of change of the horizontal kinetic energy on a fluid element,

p%f:-(cT §+cm %;E,) +d (13)

. Integrating equations (13), (5), end (12) over the volume, V, which is
contained between the two conical surfaces A¢ = ( A ¢)a and A¢ = ( A¢)b
and between the two levels z =z, and z = z, (which lie at approximate

pressures p =p, eand p = p, ), and making use of (4) we obtain,

%:-fv‘(cT§+cn%§)av+d s (1)




dEC o €C
%=_fv§( = =) @ || - I a6"’)dv+H

(15)
s} _ ,)' op ‘
¥ . ) 2w (16)
v
in which the various terms have the following interpretationsl:
K = ’erKﬂV is the total kinetic energy contained within
v the volume.
| = Jf pIav is the total internal energy contained within the
v volume.
- J‘ pBAV is the total potential energy contained within the
v volume.
d = Jf adav is the total rate of generation of kinetic energy
v within the volume by friction.
Iqj' = qJ’ IqH[dV is the total rate of generation of internal energy
v within the volume by friection.
H = ‘jr pQAV is the total flux of heat into the volume.
\'

within the volume by the horizontel pressure

_ op dp
- Jf(c = %04 == ) &V is the total rate of generation of kinetic energy
v forces.

energy within the volume by horizontal com-

aECT aecn
- 2y -+ ) &V is the total rate of generation of internal
'3 ax oy
¥ pressions against pressure forces.

is the total rate of generation of internal energy
within the volume by vertical compressions
against pressure forces.

[
<~
M
—~
Q/
m
P
&

- Jr L av is the total rate of generation of potential energy
v within the volume by the vertical pressure forces.

1 The meanings of the terms "generation" and "conversion" were discussed
elsewhere (Pfeffer [20]).
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To the above equations we should add the identities,

p 2€C, dec
jpcndsa-l- S PCndS.b=- E( 3% + ay' ) av -
S s, v

a

f(chJrcT%l;)av amn
\'g .

R R R O R T
Sl 82 \') \'s

S =|y|+d ) (19)

where S, and S, represent area measured along the conical walls A¢ = ( A¢)a
and A¢ = ( A¢)b » respectively, and S, and S, represent area measured along
the horizontal boundaries at 29 end z_ , respectively. If Cn vanlishes every-

2
where on the boundary, then

dEC JEC
D T n _ op o
55( 5o + S5 )(B.V---‘f(cT 5+ Cp 5§)dv,
v \'2

and if d and || | are each zero, either of these integrals may be taken as
the rate of conversion between kinetic and internal energy. Similarly if w
vanishes everywhere on the boundary then '

o€ 9
jé‘i(_?_z") dV=\.\/(\w s,

\'4 \')

and either of these integrals may be taken as the rate of conversion between
internal end potential energy.

It is interesting to note that to the extent that the atmosphere is in
hydrostatic equilibrium the following relationship (see Haurwitz [6]) holds,

o $ =(x+1) ’ (20)
where X = 513 » and the volume integrals in the definitions of 6 and |
v

are assumed to extend through the entire depth of the atmosphere. Using (20)
we can show that for a closed system in which the non-conservative terms d s

JW[, ana H are each zero, the rate of conversion between internal and

kinetic energy must be related to the rate of conversion between potential and
internal energy in the following manner:
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dEC dECC
3 n _ A P 0€ w
dg- ( % T TSy J = ('k- T) Jr € "oz W . (21)
i \'

Thus, if internal energy is being converted to kinetic energy, a certain
fraction of the internal energy loss is simultaneously replenished by a con-
version from potential energy. If on the other hand, kinetic energy is being
converted to internal energy a certain fraction of the internal energy gain
spills over into potential energy. Because of this relationship it is cus-
tomary to regard the sum of internal and potential energy as one form of
energy. The energy equations then reduce to,

Mg

é%% = - ‘(-(CT g§ + C §§ ) av + d (22)
1)
3P % aecT aecn
W:-jz( S T W+ Y +H (23)
where P =@ + | . The term
I R P N T T
v v v

is now regarded as the rate of generation of internal plus potential energy
by the pressure forces. This interpretation is justified on the grounds that

the integrals, - jp VB -Wjd‘f and - j W g—g— dV , individually measure
v

\
the rate of generation of internal energy by compression against the pressure
forces, and the rate of generation of potential energy by the vertical pres-
sure force.

3. EQUATIONS FOR THE KINETIC ENERGY OF AZIMUTHAL-MEAN FLOW

Equations (7) and (8) may be written with the aid of (4) in the following
forms,

ach _E{aﬁchcT BECIan-l_BE.CTow} 3
(3

ox * oy oz _§+9Dx+

C-T(an) cot ag

r

+ (Ehbb cos A () oC, (24)




=ﬂ£(ae’cnch +66.Cnp0n+B€Cnpw)_aP+pD )
3 dy

ox oy

CT( pCT) cot A¢

r

+ (Em% cos Ag) oCp - (25)

Applying the average,

[( )1 = 5 §(ra , = (26)
to (24) and (25) and making use of the identity,

[c,c,] = [e,] [c,] + [cy C,'l (27)

where the subscripts are dummy indices we have ,

aD[CT] 1 dp € [CT][Cn] o E [CT][W] . dp € [CT_'Cn'] dp € [CT'W']
ot € ( oy * oz oy ¥ oz ) +
p[CT][Cn] cot A¢ p[CT'Cn’] cot A
= + - + (20:.¢O cos A¢)p[cn] + p[Dx] (28)
Bp[Cn3 1, % € [Cn}[cn] dp € [Cn][W] 5p€[Cn'Cn'] Bpi[Cn'W']
5t 2 Sy * oz * Sy N Sz )=
plcJIc.] cot Ag plcC_'C '] cot &g
x ;C: - 5 f - (2w¢o cos Ag) p[CT] -
el oo ) (29)
where ( )* =( ) - [( )] , and we have assumed that p % p(©). Multiplying
(28) by [CT] and (29) by [Cn] and meking use of (4) once again we get,



olc, 12 olc, 12 olc. 12
%( g)=»%{£(5—§—[cn])+§-g(e g [w]}-
[cy]

_é_"{ gy(pé [CTTCnl]) + gz (pe[Clell)} + D[CTHDX] -

plegllcyllc ] cot g plellc,'c '] cot ag

s + = + et legdle,]l,  (30)

3 n _ X )8 p[Cn]g[ ) ':)[Cn]2 d[p]
5’{( 5 )—"e" 5;(5 5 Cn])+gz(€ 5 [w]) “[Cn]—?y-

e 1( 3 >
z = (p € [Cn'Cn']) # 5= (p € [Cn'w'])]"‘ D[Cn][Dy] -

Q[CT][CT][Cn] cot A¢g - p[Cn][CT‘CT'] cot A ¢

T r

- ef [Cpllc ] . (31)

Integrating (30)and (31) over V we obtain finally,

[c.1? [c 1? [c.1?
S
a

% g

Iey® lepl (5 | 5
P —3 wd52~j = 5(@6[% c. 'l +;¢Z(p€[CT'W'])} av +
S v
2

[c llc lIC ] cot A
jp[CT][Dx]dV-i- j i Tr nl ot 49 dv +
v v

plc llc,'C_'] cot Ag
j I T rn av +f pfn[cT][cn] av , (32)

v v




[c 12 [c 1® [c_1?
a[k]=fp : cndsa-j APy jp 5 vas, -
S Sy,

51
[c [c ]
J P g wds,, -5 [c] éé—?-]—dv - J —-g-{g—y (pelc'c ']) +
v \4
3 ; [c ][c ][C Jcot A g
T (p€ [cn'w']) av + f p[Cﬁ][Dy]d av -
v v .

plc_l[c.'C.'] cot Ag :
j 2 T2 av -j pf [Cpllc Jav (33)
\ \

in which the various terms have the following interpretations:
- [c1?
[K] = f ) g dvV . is the total kinetic energy of the azimuthal-mean

v .
tangential flow contained within the volume.

[c_] .

(k] = f p—5— dV  is the total kinetic emergy of the azimuthal-meen
v

normal flow contained within the volume.

2 2 2 2
p[CT] p[CT] p[CT] elc,]
f 53— G5, - j 5 CpdS, + f 25— wdS; - j g wds,
Sa s“b Sl s2

is the net transport into the volume of the kinetic energy of azimuthal-mean
tangential flow.

J elc, 12 f p[C 12 p[C 12 p[Cn]2
2 C dS C d.sb wdsl - > wd.S2
Sa. S'b Sl s2

is the net tramsport into the volume of the kinetic energy of azimuthel-mean
normal flow.

[c ]
- (o ¢ [cpre, ') + 52 (o € [Cp'w'])¢ @V is the total rate of
Y Y
v

generation of azimuthal-mean tangential kinetic energy within the volume by
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the horizontal-eddy stresses. The integrand is given by the product of the
azimuthal-mean tangential motion of an elementary annular ring with the rate
at which eddy processes accumulate linear tangential momentum w1th1n the ring.

This term is somewhat analogous to the pressure work term, J' [C ]
?

in that the integrand represents a net stress on the ring in the direction of
the mean motion of the ring. In the case of the pressure work term, the
(normal) pressure stress is involved, whereas here the horizontal-eddy stress
in the tangential direction is involved.

(o]
") €

generation of azimuthal-mean normal kinetic energy within the volume by the
horizontal-eddy stresses. The integrand is given by the product of the

azimuthal-mean normal motion of an elementary annular ring with the rate at
which horizontal-eddy processes accumulate linear normal momentum within the

g; (p € [Cn'Cn’]) + %E (p € [Cn'w'])} dv  is the total rate of

ring. This term is closely analogous to the pressure work term, - hf-[C ]§—dV »

in that the integrand of each represents a net normal stress onthe ring in
the direction of the azimuthal-mean normal motion of the ring.

[CT] cot A¢
-g p[CT][Cn] ( - + £ ) &V is the total rate of generation of
V'

azimuthal-mean tangential kinetic energy within the volume, by the fictitious
forces, through the agency of azimuthal-mean motions.

[C ] cot Ag
- Mgﬂ p[CT][CT] { =2 e + fn) dVv  is the total rate of generation of

v
azimuthal-mean normal kinetic energy within the volume by the fictitious
forces, through the agency of azimuthal-mean motions.

[C ] cotA¢
p[c '] ( i S )AV  is the total rate of generation of azimuthal-

\')
mean tangential kinetic energy within the volume by the fictitious forces,
through the agency of horizontal-eddy motions.

[Cn] cot Ag
- Jf-p[CT'CT'] ( % )dV  is the total rate of generation of azi-

v
muthal-mean normal kinetic energy within the volume by the fictitious forces,

through the agency of horizontal-eddy motions.
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J p[CT][Dx]dV is the total rate of generation of azimuthal-mean tangential

v
kinetic energy within the volume by friction.

5 p[Cn][Dx] AV  is the total rate of generation of azimuthal-mean normal
v _

kinetic energy within the volume by friction.

- j [Cn] -a-%'_)’;—] dV  is the total rate of generation of azimuthal-mean normel
v

kinetic energy within the volume by the horizontal pressure forces. It will
be noted that there is no corresponding term in the equation for [ K ].
i, EQUATIONS FOR THE KINETIC ENERGY OF HORIZONTAL-EDDY FLOW

Equations (10) and (11) may be written with the aid of () in the follow-
ing forms, _

e 1[a , O 5, O > O -
F ) =-¢ &*-?-5%)ﬁ§V3“€°J+3503—6"@ +
2
pCp C, cot Ag 3p
PLCpCy + r *O & * PCrPy s (34)
2 2 ‘ 2
C pC
d pC - 1 (3 *n d n
&( _2_n_) ="E{B_x'(_2—€CT)+3§(_2_-€Cn)+
2 2 .
3 an pCT (.!n cot Ag 3p
32 ( - € W)} - pfnCTcn - = + Cp 5y + f.)CnDy . (35)

Applying (26) to (34) and (35) and meking use of the identities,

]

Lo, c,) = [ey e IMey) + 2leylie, eyl + Lo 16y ', (36)

11

2 ] 1
[e;7e,] = [eydley ic,] + (eylc; eyl + (o) 'e, tllc,) +
fc,c;re,'] ' (37)
where the subscripts are dummy indices s we have




1k
2 2 2
olC ] [c.] [c.]
% (= )_-g{gy@e 7 (0,1 ) +5- (e —2 [Cn])}-
% {'§§ (p € [cpllegre, 1) + g; (p € [cT][cT'w']{} =
(cp')% (c.)2
%{%(oéh%—wy)+%wpe[ . wn}+
[CT] cot A ¢ [CT] cot A g
plcglle 1 ( - +£,) + olcyre 1] ( - R
[C ] cot Ag
pfn[chcnl] ¥ p[c'I‘ICTJ ( - r * p[CTCT’cn':| w -
[, §Ef] + plc 1D ] + plCc D '] (38)
T Ox Pllpllil + o T x
and

olc 12
1 2 8 )

% { gy_ (p £ [Cn][cn'cn]) + gE (p € [Cn][cnlwr])} _

. o(c_ )2 o(c,")?
LT on.d o X i -
[C_] cot Ag [C.] cot Ag
plegllc,] (= L ) -

+ fn) - p[CT'Cn'] ( =

[C ] cot Ag
pfn[cT'Cn'] - D[CTICT'] b2 T ) - pl:CTCT’CHT] &trﬁg -

te 1 2L . g . L. plc,JID] + plc, D 1] (39)

n

where we have assumed again that P % p(6). Subtracting (30) and (31) from
(38 and (39) respectively, and making use of the identities,
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5 . d3p € [c;'c,'] | s[c,]
55 (P € [elley eyl = ey o tepefe'cy!] = (ko)

and

[c,®1 = ()% + W1 (k1)

1 ] 1

where the subscripts are dummy indices, and 1 is a dummy variable, we obtain,

ol(c,")?] (c.")® (c.")?
%(—§L~)n§{%umt T oD+ (pl [ ﬂ@-
316,] 3[c,)
plCp'Cy' ] —55 - plCy'w'] —z=— + pf lCh'C, '] +
[C ] cot Ag
plCp'Cp'] —— +p(CT'cn'CTIEEc_rA‘q .
c.: &' +plc, D, '] (42)
T ox T x
5 el(cnf1 |y (c,")° " (c,n?
E(~?r——)=-g{$mpet L c]ad(pe [ 2w -
alc ] 3lc, ]
plc,'C, '] — - plo '] — - pf e C, 0] -
[C.] cot A¢@
D[CT'Cnl] : = - p[CT'Cn'CT] E-OtriA -
[c.' &'7+olc D '] (43)
n Oy n'y

Integrating (42) and (43) over V we obtain, finally,



—
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: o(c, )2 (c.')2
aSlt( =I[ g andsa-j[pg C1:1}d'sb+

SS. Sb
o(c. 1)2 o(C,,)?
j [ g W ]dSl - j [ g W ]d-SE -
Sl 82
| a[cT] a[CT]
(p[cTrcnr] = + Q[CT'W'] -~ )dV + jpfn[CT'Cn']dV +
v A

[C_]1 cot Ag
t ] n ! ' cot A
j olC,'Cy'] . av + jp[CT ¢ ¢l ——E’r av -

v \

j Gy &' Jav + jp[CT'DX']dV , (41)
vV v

, o(c_ )2 o(c_1)?
%é.‘_=f[ 2 cn]dsa-f[ 7—C_ las, +
B Sy

2 2
c! (c ¢t
I[D(en)w]dﬁl_f[Pg)W]d‘se_

Sl S2

ofc 1 olc, ]
J (p[cn'cn'] = p[Cn'w'] — )av - pfn[CT'Cn']dV -
v v

[C.] cot Ag
J pley'c ] T - av - jp[cT'cn'cT] 3‘%9 av -

v v
f e ' -g-;ir']dv +J,pfcn‘Dy’]dV (45)
v v

in which the various terms have the following interpretations:




g

2
pl(Ccy")7]
[K'] = ——>—— 4V is the total kinetic energy of the horizontal-eddy

v
tangential flow contained within the volume.
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[ k'] = e dv  is the total kinetic energy of the horizontal-eddy
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normal flow contained within the volume.
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energy of horizontal-eddy tangential flow.
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5 is the net transport into the volume of the kinetic

n

2
p(C_*)
j -——’—g—-- wdS, is the net transport into the volume of the kinetic
S

2
energy of horizontal-eddy normal flow.

oley] a[cT]
- (D[CT'Cn'] S + p[CT’w'] g )dV  is the total rate of generation

v
of horizontal-eddy tangential kinetic energy within the volume by the horizon-
tal-eddy stresses. The integrand of this term is given by the product of the
rate of transport of tangential linear momentum across an elementary annular
ring with the rate of shear of the azimuthal-mean tangential velocity across
the ring. It is readily seen that a horizontal-eddy transport of momentum in
the direction of the gradient of the azimuthal-mean flow will tend to increase
the horizontal-eddy kinetic energy in the ring. This term is somewhat analo-
gous to the pressure work term, _\jﬂ [p] féfgl av » in that the integrand re-
v Yy

presents a net rate of distortion of the ring by the mean motion acting
against a stress. In the case of the pressure work term, a compression
against the (normal) pressure stress is involved, whereas here a shear against
a horizontal-eddy stress in the tangential direction is involved.
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"\jr (D[Cn'Cn'] ——53— + p[Cn'w'] ——Eg— )V is the total rate of generation

v
of horizontal-eddy normal kinetic energy within the volume by the horizontal-
eddy stresses. The integrand of this term is given by the product of the rate
of transport of normal linear momentum across an elementary annular ring with
the rate of compression on the ring due to the azimuthal-mean normal velocity.
It is readily seen that a horizontal-eddy transport of momentum in the direc-
tion of the gradient of the azimuthal-mean flow will tend to increase the hori-
zontal-eddy kinetic energy in the ring. This term is closely analogous to the

pressure work term, _‘JF [p] B[Cn] av in that the integrands of both repre-
v 3 ’

sent a net rate of compression acting against a normsl stress.

[C ] cot Ag
W ta n ' cot A
J ef [Cprc 'lav + f plCp'Cy'] - av +] plCy'c, 'Cpl ——% av
v v v

is the total rate of generation of horizontal-eddy tangential kinetic energy
within the volume by the fictitious foreces, through the agency of horizontal-
eddy motions.

[C.] cot Ag
- f pfn[CT'Cn']dV - j p[CT’Cn'] L av - fp[chcT*cT] ﬂ;r_"-“ﬁ av

r
v v v
is the total rate of generation of horizontal-eddy normal kinetic energy within
the volume by the fictitious forces, through the agency of horizontal-eddy
motions.

hy p[CT'Dx']dV is the total rate of generation of horizontal-eddy tangential

v
kinetic energy within the volume by friction.

wf p[Cn'Dy']dV is the total rate of generation of horizontal-eddy normal ki-

'
netic energy within the volume by friction.

' -
-,f’ [CT' g& Jav  is the total rate of generation of horizontal-eddy tan-
v

gential kinetic energy within the volume by the horizontal pressure forces.

L}
- H[n[Cn' g? Jav  is the total rate of generation of horizontal-eddy normal
v

kinetic energy within the volume by the horizontal pressure forces.

=



5. ENERGY CYCLES OF ROTATING WIND SYSTEMS

With the use of the following notation,
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we may write equations (32), (33), (44), (45), and (22) in the forms shown on

the following page:
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wherelwl ,ll,]]nl P IlU'I , and |[|jn| ' represent rates of generation of

heat by friction associated with azimuthal-mean tangential, azimuthal-mean
normal, horizontal-eddy tangentiel, and horizontal-eddy normel motions, re-
spectively.

In these equations, the E 's are associated with the horizontal-eddy
stresses, the M's and C 's with the fictitious forces (the latter being
the Coriolis terms) , the W/'s with the horizontal pressure forces, the D's
and || 's with friction, and the T 's are rates of energy transport into
the volume.

It will be noted that the M 's and C 's each occur in two different
equations with opposite signs. Since they are not separated by boundary
terms they therefore measure conversions among the various forms of energy.
In particular, they represent conversions between normal and tangential
forms of kinetic energy. The E's, W 's, D 's, and |W] 's, on the other
hand, are separated by boundary terms, as follows:

E-E +E"

E, - E, *E,"
E -E, +E,"
Ew "En' *Em'
W, =W+ W,
W' -W W
W, =W, W,
Dy=lW];*S;
D,-1W¥l,+S,
D' -1y|' + S

D, =1Wl,' *Sy’

where

E" =§p[cT1[cT'cn'] as
5]

E ''= j plCpllcp'vw'] as,- f plcpllcy'w'] as;

w
51 Sp
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En" = olc ][c 'cn'] ds
js. v

E.'" = f p[Cn][cn'w'] ds, - f p[Cn][CnW'] ds,

Sy 5o

w, j [c, (5] as
S

W' = o
P —t
I - LIESN |
W, -jcnpds
S

Therefore, only when the corresponding boundary terms vanish identically may
each one be regarded as a measure of the rate of conversion between two forms
of energy. The arrows in equations (L46) through (50) represent these con-
versions. (It will be noted that the conversions associated with friction
may proceed in only one direction, namely from kinetic to potential plus in-
ternal energy.)

According to equations (L46) through (50), the only form of energy di-
rectly affected by heating, H » is internal plus potential energy. This may,
in turn, be converted to horizontal-eddy forms of kinetic energy, or to azi-
muthal-mean normel kinetic energy, through work done by the horizontal pres-
sure forces. Such conversions are represented by the VW 's. There is, how-
ever, no direct link between internal plus potential energy and azimuthal-
mean tangential kinetic energy. The latter must, therefore, receive its en-
ergy either from azimuthal-mean normal kinetic energy, through conversions re-
presented by ( M + C ), or from horizontal-eddy kinetic energy, through
conversions represented by ( E 1-EEW) and M . (It may be noted that the

M 's are important only in systems such as the hurricane, in which [CIJ is

intense near the axis. In the case of larger-scale systems, such as the gen-
erel circulation, these terms are negligible.) If we combine equations (48)
and (49) and think of K ' + k' as a single form of energy,
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we may distinguish several possible cycles which can lead to the masintenance
of the kinetic energy of azimuthal-mean rotation:

1) P is converted to [ k ] through work done by the horizontal pres-
sure forces ( W n). [ k ] is, in turn, converted to [ K ] through work

done by the fictitious forces (M +C).

2) P is converted to K ' + k' through work done by the horizontal
pressure forces ( W ' +W . K®'+ k' is, in turn, converted to [ K ]
through work done by the eddy stresses ( E' + Ew') and by the fictitious

forces (M ').

3) P is converted to [ k ] through work done by the horizontal pressure
forces ( Wn). [ k ] is, in turn, converted to K' + k' through work

done by the eddy stresses ( En' + Enw‘) and by the fictitious forces ( M'').

Finally, K' + k' is converted to [ K ] through work done by the eddy
stresses ( E ' + Efw') and by the fictitious forces ( M ').

L) P is converted to [k] through work done by the horizontal pressure
forces ( W' + \A/n'). K'+ k' is, in turn, converted to [ k ] through

work done by the eddy stresses ( E '+ E =) and by the fictitious forces

( M''). Finally, [k] is converted to [}(_] through work done by the ficti-
tious forces ( M +C).

5) Various combinations of the above cycles may also lead to the main-
tenance of [ K ].

The different energy cycles presented above can be traced with the aid
of figure 1. Among the sbove possibilities the first two are the more famil-
iar ones. The first is characteristic of the so-called "Hadley regime" of
convection, which develops in rotating model experiments (e.g., Fultz [5])
when the radial gradient of the heating is intense and the rate of rotation
of the vessel is small. The second is characteristic of the "Rossby regime"
of convection, which develops under conditions of weak heating and high ro-
tation. By analogy, it would be expected that rotating systems in the earth's
atmosphere which occur under different conditions of heating and rotation are
maintained by characteristically different energy cycles. Iet us examine the
cycles associated with a few of these rotating wind systems:

We consider first the largest-scale rotating system in the atmosphere,
namely, the average zonal wind current which encircles each hemisphere. 1In
this circulation the most intense westerlies and easterlies are located suf-
ficiently far from the pole that the M 's in equations (46) through (50)
are negligible. Furthermore, as shown by Kuo [15], the observed north-south
temperature contrast is not great enough, relative to the rate of rotation of
the earth about its polar axis, to drive a general circulatinn of the Hadley
type. Thus, conversions of the type (C ‘must be small. It turns out that
potential plus internal energy 1s converted first into the kinetic energy of
horizontal eddies which, in this case, are the "waves in the westerlies".
Horizontal-eddy kinetic energy is then converted to mean zonal kinetic energy
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Figure 1. - Energy cycles of rotating wind systems.

through conversions of the type ( E*' + Ew'). (It may be noted that the

direction of the latter conversion is exactly opposite to that which would be
expected in the case of small-scale horizontal-eddy viscosity.) In addition,
there is some evidence (Starr [23]) to indicate that mean zonal kinetic energy
is converted into mean meridional kinetic energy through the action of the
Coriolis force (C ). Although this conversion is small, it aprears to be
sufficient to maintain the extremely dry horse latitudes through sinking
motions in the vicinity of 30°N. and S. latitude, and the belts of cloud and
rain near 60°N. and S. latitude through rising motions in these belts. The
energy cycle of the global wind circulation is summarized in figure 2.

Next, we consider the maintenance of extratropical disturbances. As
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Figure 2. - Energy cycle of the general circulation of the earth's atmosphere.

noted above, these are the "horizontal-eddies" in the general circulation.
Viewed as a group, these systems receive their kinetic energy primarily
through conversions from potential plus internal energy. If, however, we
focus attention on one such system, regarding its kinetic energy as the azi-
muthal-mean kinetic energy, and the kinetic energy of the surrounding systems
as horizontal-eddy kinetic energy, we find that the system under considera-
tion may interact with the neighboring systems through horizontal-eddy con-
versions of the form ( E + Ew') and M' , and through various boundary

terms. Referring to equations (46) through (50), we see that this implies
that potential energy is being converted to both horizontal-eddy kinetic
energy and to azimuthal-mean normal kinetic energy through work done by the
horizontal pressure forces. It is not possible to say, & priori, in what
direction the eddy conversions ( E '+ Ew') and M ' proceed in this case.
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In particular, do any of the extratropical systems feed on the energy of

others? If so, what are the characteristics of such systems, and what are
the characteristics of the systems which give up their energy? Questions
such as these can be answered only through an appeal to data.

We turn now to a consideration of the tropical cyclone. Since the com-
ponent of the earth's rotation sbout a vertical axis located in the Tropics
is smell, the intensity of the heating required to produce a circulation of
the Hadley type in the Tropics is not as great as that of circulation else-
where on the globe. . As it turns out, the hurricane has many characteristics
of the Hadley regime. In particular, large conversions from [ k ] to [ K]
take place through the action of the processes M+C. once again, however,
the question arises whether there are conversions of the type E '+ E‘w' and

M: » end in what direction they proceed. In this connection, it may be
noted that hurricanes do not form as often as: might be expected on the basis
of the presence of conditional instability in the Tropics. Do hurricanes,
in fact, require an additional source of rotational energy? Does this addi-
tional energy come from the neighboring systems through conversions of the j
type Eé+Ew' and M' ? Questions of this nature will be looked into in }
section O. :

Finally, in the case of the tornado, it is readily shown that conversions
of the type C are entirely negligible. It would appear on the basis of
scattered evidence that the tornado derives its rotational energy from in-
tense shears in the thunderstorm, largely through the term M , although no
quantitative measurements are available to confirm this speculation. The
mechanism of the tornado is complicated, however, by the fact that the axis
of rotation is not vertical. There must, therefore, be transports of the
type T out of the region of kinetic energy generation.

6. ENERGY TRANSFORMATIONS IN THE MATURE HURRICANE

In order to answer questions such as those posed in section 5, it will |
be necessary to compute, from observational data, the direction and magni- '
tude of each link in the energy cycle of each type of rotating system in
which we are interested. In the present section a beginning is made in this
direction in the case of the mature hurricane. Here, certaln aspects of the
energy cycle of the hurricane are examined quentitatively. Owing to the com-
plexity of the problem, however, and the lack of adequate observational in-
formation ebout thermodynamical processes in the hurricane, this investiga-
tion deals only with the mechanical aspects of the problem. More specifi-
cally, only those processes which directly affect the state of rotation of :
the atmosphere are examined, and no direct information is given regarding the
manner in which these processes are related to the thermodynamics. It is felt |
however, that a great deal of insight into the mechanism of the hurricane, or |
any other rotating system in the atmosphere, can be gained by examining even
small portions of the energy cycle.

The data and computetional procedures employed in this study were dis-
cussed in [18] and [19]. In accordance with the remarks in [19] concerning '
the measurability of the teim, [C'l' ‘w'], the integral E w Vas not evaluated.
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In the computations the quantity [C_] was replaced everywhere by [C ]''. Es-
timates of the work done by frictioh were made on the basis of the gpproximate

formula,

Dy =-2nr 2 pyK f [cplolict cpl, sin Ag a( A g) (55)
Ag

where the zero subscripts refer to quantities measured at 1000 ft., and the
magnitude of the skin friction coefficient, K, angEthe deggity at 1000 ft.,
py » Were taken as K = 0015 and Py = 1.1903 x 10 “gm.cm. “. The trapezoidal

rule was used to evaluate all integrals.

Owing to the limitations of the data, the numerical evaluation of the
various integrals in (46) extends only over the region 2° < A¢ < 6°. Since
the portion of the atmosphere contained within this volume cannot be regarded
as a closed system, the boundary integrals, as well as the generation terms,
must be considered.

Estimates of the various energy integrals which appear in equation (46)
are given in the first five rows of table 1. The first two columns of this
teble provide a breakdown of the integrals for the inner (2°< A ¢ £ 4°) and
outer (4° £ A @F<6°) portions of the volume, respectively, while the last
column gives the total for the volume. Focusing attention on the last column,
we find that the generation of azimuthal-mean tangential kinetic energy by

Teble 1. - Estimates of energy integrals in equation (46), based on composite
wind charts of the mature hurricane. 1 unit = ZLO:L gm. cm.asec."5

A¢ 20 - ,+o hu - 60 20 - 60
T -11.1 -7.6 -18.8
C +27.3 +25.1 +52.4
M +26.8 +6.2 +33.0
M +1.6 +1.6 +3.2
E +5.8 +2.3 +8.1
T+C +M +42.97 +23.7 +66.6
M' +E +7.40 +3.9 411.%
Total 450,37 +27.6 +77.9

Frictional drain +5.11 +28.3% +T3. 4
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azimuthal-mean motions, ( M +C), is about eight times as large as the gen-
eratinn by horizontal-eddy processes, ( M ' + E ). Since the azimuthal-mean
motions serve also to transport energy out of the volume, however, their net
contribution is about six times as large as that of the horizontal eddies.
This may be seen by comparing rows 6 and 7 in the last column.

Turning now to the first two columns and comparing rows 6 and T, we find
that azimuthal-mean processes bear roughly the same ratio to horizontal-eddy
processes in both portions of the volume. It may be noted, also, that both
the azimuthal-mean and the horizontal-eddy processes provide a greater contri-
bution in the inner region than they do in the outer region. For the horizon-
tal-eddy processes this is just the reverse of what was found in the angular
momentum balance (table 1 of [19]). This result is not surprising, however,
when we realize that a convergence of linear momentum at high levels in the
outer region, where the rotation is anticyclonic (shaded area in fig. 3 of
[18]), leads to a negative value of [E in this region.

Comparison of the values in the last two rows of table 1 indicates that
the total contribution of the measured terms closely satisfies the frictional
requirements. This is apparently true in each portion of the volume as well
as in the entire volume. Thus, it is likely that the neglected integral,EE‘H
does not contribute a great deal to the energy balance of each region.

Tables 2 and 5 give a further breakdown of the results. In these tables
the energy budgets of the lower and upper portions of the atmosphere are pre-
sented. The vertical velocities computed in [19] were used in the evaluation
of T . , and the assumption was made that friction acts to abstract kinetic
energwarom the lower layer and has no effect on the upper layer.

Comparison of the last two rows in each table reveals that the various
generation terms and boundary integrals which have been measured supply too
much energy to the upper portion of the atmosphere, and too little to the
lower portion. This might be due to errors in the data, or it could be due
to the neglect of the integral, EZW, If there were a vertical convergence

of linear momentum in the lower layer, and a verticel divergence of linear
momentum in the upper layer, this integral could bring about the required re-
distribution of energy in the vertical without affecting the energy budget of
the volume as a whole.

It will be noted that the discrepancies between the last two rows are
more serious in table 3 than they are in table 2, since the individual terms
in the first part of the table are smaller in the case of the former. It
might not be meaningful, therefore, to make detailed comparisons among the in-
dividusl terms. Two features of these tables appear to be significant, how-
ever. In the first place, it may be noted that, in the upper portion of the
atmosphere, the integral, E , is very much larger in the inner region than it
is in the outer region. This may be explained by the fact that the conver-
gence of linear momentum at high levels is weighted by a comparatively large
positive value of {CT] in the inner region, and a negative, or small positive,

value of [CT] in the outer region. Thus, a process that tends to increase the

momentum in a region may tend to decrease the kinetic energy in the same region.
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Table 2. - The energy balance of the lower portion of the atmosphere (surface
to 600 mb.), based on the composite wind charts of the mature hurricane.

1 unit = lOngm. f:.m.2:3ec."5
AQ 2% - b° Lo -6° 2 = B
Tw 0 0 0
T -12.6 -5.0 -17.6
C +25.7 +16.9 +42.5
M +24.0 +6.3 +30.2
M' +0.6 +1.1 +1.8
E +1.6 +2.2 +3.9
T,+T+C +M +37.0 +18.1 +55.1
M'+E +2.2 +3.4 +5.6
Total +39.2 +21.5 +60.7
Frictional drain +45.1 +28.3 +73.4

Teble 3. - The energy balance of the upper portion of the atmosphere (600 mb.
to 125 mb.) based on composite wind charts of the mature hurricane.

1 wit = 1018@1. c.:rn.esoi:c:.m5
. A g 20 = Eo 10 V_ B'cv 20 o 60

T. 0 0 0
T +1.5 -2.6 -1.1
G +1.6 +8.2 +9.8
M +2.8 e +2.8
M' +1.0 +0.4 +1.h4
E +h,2 +0.1 +4.3
Tw + T +C +M +6.0 +5.5 +11.5
M'+E +5.2 +0.5 +5.7
Total +11.1 +6.1 +17.2

Frictional drain 0 0 0
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It may be noted, in this connection, that even if the present measurements
have underestimated the angular momentum convergence in the upper portion of
the outer region, the qualitative result that [E is small in this region is
probably correct, since [CT] is negative in one part of the region and posi-
tive in the other.

The second feature of interest is that the processes associated with the
azimuthal-mean motion take on much larger values in the lower layer than they
do in the upper layer (compare row T, colum 3 of tables 2 and 3), whereas the |
magnitude of the horizontal-eddy processes is roughly the same in the two |
leyers (compare row 8 colum 3 of tebles 2 and 3). The significance of this 5
result is that one cannot expect the ratio of two different physicel processes,
measured at a single level in the atmosphere, to be representative of the ra- i
tio of the integrals of these processes through the depth of the atmosphere.
In the present case, the ratio of the contribution by horizontal-eddy pro-
cesses to that by azimuthel-mear motions would be greatly overestimated in
the upper portion of the atmosphere and underestimated in the lower portion
of the atmosphere.

It is of interest to compare the variation of M and C with distance
from the center of the hurricane. Returning to table 1 we find that M is
much larger in the inner region than it is in the outer region, whereas C
increases only slightly from the outer to the inner region. It should be
noted- in this connection, that the ratio of M to is of the order

[cpl

(r sin A¢)a>¢
| 0

Therefore, since [CT] increases toward the center of the hurricane, while
(r sin A¢)a>¢ _ decreases, M must become larger than (C as we approach
0

the center of the hurricane. Linear extrapolation of the values in table 1 !

(-] (-]
would give for the volume 0° £ A <2°, M ~ +50 x lolegm. cm. 2gec. =3

(which is probably an underestimate, since |V depends on the square of the

azimuthal-mean tangential velocity), and C ~+ 29 x J.Olsgm. cm. zsec..5 .

This may be compared with the transport, T , and the work done by the hori-
zontal-eddy stresses, E , across A ¢ = 2°, which are measured to be approxi-

mately +23 x lolsgn. em.%sec.™ and 1 x lOlBgm. cm. Zgec. ™ , respectively. Al-

though there is no way of estimating the magnitude of the term, E , it is
probably safe to say that for the region 0°< A (@<L 2° this integral is negli-
gible in comparison with M . This follows from the observation that the
flow patterns around a hurricane become more symmetrical near the center of
the storm, and also that, with decreasing distance from the center of the
hurricene, the major contribution to the convergence of the horizontal-eddy
flux of momentum shifts to higher levels, where the weighting by [CT] is
smeller. :

Estimates of the generation terms, | and [E ' and the boundary inte-
gral, E'', are given in table k., The values in the last column show that
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Table 4. - Estimates of the horizontal-eddy terms, based on composite wind

charts of the mature hurricane. 1 unit = lOlBgm. cm.esec.-3

— — p—
— — —

Ag 2° - B 4o - 6° 2° - 6° |
E +5.8 +2.3 +8.1 |
E' -2.8 -3.8 -6.5
E' +3.0 1.4 +1.6

the horizontal-eddies are tending to lose, and the azimuthal-mean flow to

gain, energy through the action of the large-scale eddy stresses within the
volume. Furthermore, the magnitudes of the two processes are not very dif-
ferent. In accordance with the conclusions reached in another article

(Pfeffer [20]) it would not be correct to speak of a rate of conversion be-
tween horizontal-eddy and azimuthal-mean components of kinetic energy within
this volume, since the integrand of E '' does not vanish. In this connec-
tion, it may be noted that the value of [E'' on the outer boundary ( Ag =6°)

is 3.7 x lolagm. il P9 Thus, it is not possible to determine the di-
rection in which the energy cycle proceeds in this case. It is clear, how-
ever, that the horizontal-eddy stresses give a negative generation of hori-
zontal-eddy energy and a positive generation of mean tangential kinetic

energy.

Focusing attention on the first two columns in table 4 we find that the
meximum negetive generation of horizontel-eddy energy takes place in the outer
region, whereas the maximum positive generation of azimuthal-mean tangential
kinetic energy takes place in the inner region. If the E 's do, in fact, re-
present conversions between K and [ K], then it is apparent that the azi-
muthal-mean rotation within the inner region is gaining energy at the expense
of the horizontal eddies in the outer region.

The analysis of the horizontal-eddy processes by layers 1s showvn in
tebles 5 and 6.

Table 5. - Estimates of the horizontal-eddy terms within the upper layex based
on composite wind charts of the mature hurricane. 1 unit = lOlBgm. cm.esec.-

Ag 20 - ho . ho - 60 20 - 60
E | + 4.2 +0.1 4.3
E’ -S4 -2,2 -2

E' +2.1 ~2,1 +0.0
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Table 6. - Estimates of the horizontal-eddy terms within the lower layer based

on composite wind charts of the mature hurricane. 1 unit = lOngm. cm.esec.-3

Ag 2P i ® e - 6° 2° - 6°
E +1.6 +2.2 +3.9
E' -0.7 -1.6 -2.3
E ' +1.0 +0.6 +1.6

The large difference in [ between the inner and outer regions in the
upper layer was noted earlier. Focusing attention, now, on the second row of
each table, we find that the absolute value of [ ' is larger in the upper
layer than in the lower layer. This is in accordance with the fact that the
steepest radial gradients of [CT] are found at high levels (fig. 3 of [18]).

Another interesting feature that may be noted (row 3 of tebles 5 and 6) is
that the boundary integral [|E '! vanishes in the upper layer but not in the
lower layer. Evidently, interactions with neighboring systems extend to
greater distances from the hurricane center in the lower layers of the at-
mosphere.

T. CONCLUSIONS

It has long been recognized that azimuthal-mean motions play an impor-
tant role in the mechanism of the hurricane. From a hydrodynamical stand-
point there could be little doubt that energy conversions of the type
(M +C) contribute significantly to the maintenance of rotational motion
in the hurricane. Very little has been known, however, about the magnitude
and direction of energy conversions of the type ( E + EEW) and M ', which

represent interactions between the hurricane and its surroundings. Since the
hurricane apparently has its own driving force (viz., heating at the center)
it might have been expected, a priori, that such interactions would be in the
sense of a viscous effect, in which the energy of organized rotation tends to
become dissipated into the energy of horizontal eddies. Perhaps the most sig-
nificant feature of the present results is that they show the reverse to be
the case; namely, that the hurricane actually feeds on the energy of the hori-
zontal eddies 2.

Since the horizontal-eddy processes ccntribute only about one-seventh of
the energy necessary to maintain the rotation in the volume considered, it
might be asked whether, to a first approximation at least, we may neglect them
in attempting to account for the genesis and maintenance of the hurricane. To
be able to answer this question in the affirmative, it would be necessary to
explain, without resorting to a horizontal-eddy mechanism, why it is that

2 Other investigators (see, for example, Arakawa [1] and Rodriguez Ramirez

[22]) have speculated that this might be the case, but, to the writer's
knowledge no actual measurements were made before the present study.
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hurricanes appear as infrequently as they do, in the face of the rather fre-
quent occurrence in the Tropics of widespread thunderstorm activity, accom-
panied by the release of large amounts of latent heat. In this connection,

it may be noted that hurricanes almost always form within already present east-
erly waves or shear zones, which are apparently maintained by horizontal-eddy
processes.

Viewed in the light of the fluid model experiments, the hurricane may be
said to possess characteristics of both the Hadley and the Rossby regimes of
convection.
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